New genome reveals how Arctic microbes survive in cold extreme habitats

Date:

Share post:

Scientists at the University of Bristol have revealed how a tiny Arctic microbe, crucial to shaping the surface of glaciers, survives in such extreme conditions.

New genome reveals how Arctic microbes survive in cold extreme habitats
The cyanobacterium Phormidesmis priestleyi BC1401 was isolated from cryoconite 
on the Greenland Ice Sheet [Credit: Nathan Chrismas]

For the first time, researchers at the Bristol Glaciology Centre sequenced the genome of Phormidesmis priestleyi, which belongs to the cyanobacteria, an ancient group of photosynthetic microorganisms capable of transforming energy from sunlight into sugars using carbon dioxide and water.

Recent studies have shown that cold extreme habitats thrive with microbial life. In the Arctic, Antarctic and high altitude places where plants cannot survive, cyanobacteria serve as major primary producers and represent the base of the microbial food chain.

In the Greenland ice sheet, Phormidesmis priestleyi helps to form cryoconite holes — dark, dust-filled puddles on the ice sheet surface. Cryoconite holes can be found covering vast areas of ice, making these microbes important ecosystem engineers on glaciers and ice sheets. Explaining how these organisms are capable of survival in these environments is key to understanding the ecology of Polar Regions.

Lead author Nathan Chrismas a PhD student from the Bristol Glaciology Centre, said: “Many cold adapted organisms, or psychrophiles, have distinct signatures in their genomes related to how they are adapted to survival in the cold. By isolating and sequencing its genome of Phormidesmis priestleyi, we could look for distinctive signatures at the genome level. We found its genome is similar to related organisms from much warmer environments. This new genome suggests that Phormidesmis priestleyi mainly survives in cold environments by producing a special protective coating made from sugars.”

Dr Patricia Sanchez-Baracaldo, Royal Society Research Fellow at the School of Geographical Sciences said: “I am delighted that my lab was able to sequence the first genome of a key cyanobacteria in the Arctic. Our work shows that by wrapping itself in a protective layer made out of a complex arrangement of sugars, this microbe uses this sticky layer to protect its cells from freezing, allowing it to survive through the Arctic winter.

“Interestingly, other cyanobacteria species use similar strategies in order to survive in other extreme habitats. Such strategies have allowed cyanobacteria to colonise some of the most inhospitable places on our planet.”

The research was published in the open access journal BMC Genomics.

Source: University of Bristol [August 03, 2016]

ADVERTISEMENT

spot_img

Related articles

Domesticated wheat has complex parentage

Certain types of domesticated wheat have complicated origins, with genetic contributions from wild and cultivated wheat populations on...

AI used to test evolution’s oldest mathematical model

Researchers have used artificial intelligence to make new discoveries, and confirm old ones, about one of nature's best-known...

Study of marten genomes suggests coastal safe havens aided peopling of Americas

How did the first humans migrate to populate North America? It's one of the great scientific puzzles of...

Earliest evidence of reproduction in a complex organism

Researchers led by the University of Cambridge have found the earliest example of reproduction in a complex organism....

Gene transcripts from ancient wolf analyzed after 14,000 years in permafrost

RNA - the short-lived transcripts of genes - from the "Tumat puppy", a wolf of the Pleistocene era...

Simulating how the Earth kick-started metabolism

Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence...

Arctic rotifer lives after 24,000 years in a frozen state

Bdelloid rotifers are multicellular animals so small you need a microscope to see them. Despite their size, they're...

Genetic origins of the saffron crocus explained

With a price tag of up to 30,000 euro per kilogram, saffron is the most expensive spice in...