Studying the evolution of life’s building blocks


Share post:

Studying the origin of life at its building blocks offers a unique perspective on evolution, says a researcher at Michigan State University. 

Robert Root-Bernstein, physiology professor [Credit: G.L. Kohuth]

Robert Root-Bernstein, MSU physiology professor, will answer the question of why a physiologist studies the origin of life at the annual meeting of the American Association for the Advancement of Science Feb. 16-20 in Vancouver, British Columbia. 

Paleontologists study ancient life and reason that each species is a modification of the previous generation. Geneticists embrace this theory and trace the lineage of genes. Root-Bernstein wondered if there could be another level of paleontology embedded in the molecules that reflect evolution from the earliest stages of life and found in prebiotic chemistry, the study of chemical reactions that may have sparked the beginnings of life. 

“By studying modules built from very simple chemicals, I’m hoping that it will lead to an understanding of a molecular paleontology in modern systems,” he said. “Whether it’s a human or a bacterium, we’re all made from the same basic modules that have more than likely been around since the beginning of time.” 

For example, one aspect of Root-Bernstein’s research is studying the small glucose binding sequences that occur in all protein and peptides like insulin. Focusing on these basic building blocks could provide new insights into diseases such as diabetes. 

Having the characteristic of taking a nontraditional view has helped further Root-Bernstein’s research. 

“Albert Szent-Gyorgyi, the physiologist who discovered vitamin C, once defined discovery as seeing what everyone else sees and thinking what no one else thinks,” he said. “I often find that phenomena that are obvious to other people are not obvious to me.” 

Root-Bernstein’s ability to seek the common chemical building blocks between bacteria and humans formally known as molecular complementarity, is a distinctive view. This shared set of modules could be the basis for the evolution of the chemicals systems on which life is based, he added. It could, in fact, be the essential agent controlling evolution at every level. 

“I study molecular complementarity mainly because I’m a pattern seeker, even when I was an undergraduate,” Root-Bernstein said. “I hope to help answer how life evolved to take advantage of molecular complementarity so that the two concepts are virtually synonymous.” 

For more details about AAAS, the world’s largest general scientific society, visit 

Source: Michigan State University [February 20, 2012]



Related articles

Remains of raised performance stage discovered in pond at ancient Asuka palace

Archaeologists have uncovered the remains of what likely supported a wooden stage built over a pond at what...

10,000-year-old human history unearthed

More than 10,000 years ago, Native Americans crossed through Northern Colorado. Today, Dr. Jason LaBelle and CSU archaeology...

Minoan villa discovered at Ierapetra, Crete

A Minoan mansion dating to 1600-1400 BC has been discovered in the mountainous area of Anatoli, Ierapetra, southeast...

Fairy circles apparently not created by termites after all

For several decades scientists have been trying to come up with an explanation for the formation of the...

Less damage to ancient Palmyra than feared, Syrian antiquities chief says

Damage to the World Heritage site of Palymra by Islamic State militants may be less than earlier believed,...

Headhunting and amphitheatre combat in Roman London

Scores of skulls excavated in the heart of London have provided the first gruesome evidence of Roman head...

Many of Turkey’s bird species face extinction

As much as 70 percent of birds in Turkey, including migratory species, face extinction, an academic involved with...

Ancient Chinese town’s Ming dynasty buildings under water

One of China’s renowned ancient towns was under water on Wednesday as heavy rain hit the centre of...