Space tornadoes power the atmosphere of the Sun


Share post:

Mathematicians at the University of Sheffield, as part of an international team, have discovered tornadoes in space which could hold the key to power the atmosphere of the Sun to millions of kelvin. 

The space tornadoes are very magnetic and they operate in plasma – Plasma is the forth known state of matter, beside solid, liquid and gas and makes around 99 per cent of the known matter of the Universe. The tornados act in a similar way to water does if you take the plug out of a full bath [Credit: University of Sheffield]

They are more than 1,000 miles wide — hundreds of miles longer than the total distance between Land’s End to John O’Groats. It is estimated that there are as many as 11,000 of these swirling events above the Sun’s surface at any time. 

Applied mathematicians from the University of Sheffield (Professor Robertus Erdelyi – senior author, and Dr Viktor Fedun) collaborating with the University of Oslo in Norway (Drs Sven Wedemeyer-Bohm — first author, Eamon Scullion — a Sheffield ex-postgraduate, Luc Rouppe van de Voort), Kiepenheuer Institute for Solar Physics of Freiburg, Germany (Dr Oskar Steiner), and Uppsala University in Sweden (Jaime de la Cruz Rodriguez), say the solar tornadoes carry the energy from the energy reservoir below the Sun’s surface, called the convection zone, to the outer atmosphere in the form of magnetic waves. 

Professor Robertus Erdelyi (a.k.a von Fay-Siebenburgen) Head of the Solar Physics and Space Plasma Research Centre (SP2RC) of the University of Sheffield’s School of Mathematics and Statistics, said: “If we understand how nature heats up magnetized plasmas, like in the tornadoes observed in the Sun, one day we may be able to use this process to develop the necessary technology and build devices on Earth that produce free, clean, green energy. Because of our collaborative research it looks an essential leap forward is made towards unveiling the secrets about a great and exciting problem in plasma-astrophysics and we are getting closer and closer to find a solution. 

“We report here the discovery of ubiquitous magnetic solar tornadoes and their signature in the hottest areas of the Sun’s atmosphere where the temperature is a few millions of degree kelvin, about thousands of kilometers from the Sun’s surface. This is a major step in the field.” 

Professor Robertus Erdelyi added: “One of the major problems in modern astrophysics is why the atmosphere of a star, like our own Sun, is considerably hotter than its surface? Imagine, that you climb a mountain, e.g. a Monroe in the Scottish highlands, and it becomes hotter as you go higher and higher. Many scientists are researching how to “heat” the atmosphere above the surface of the Sun, or any other star. 

“It is understood that the energy originates from below the Sun’s surface, but how this massive amount of energy travels up to the solar atmosphere surrounding it is a mystery. We believe we have found evidence in the form of rotating magnetic structures — solar tornadoes — that channel the necessary energy in the form of magnetic waves to heat the magnetized solar plasma. It is hoped that the process could be replicated here on Earth one day to energize plasma in tokamak that are believed to be a future device to produce completely clean energy.” 

Scientists viewed the solar tornadoes in the outer atmosphere of the Sun, stretching thousands of miles from the giant star’s surface by using both satellite and ground-based telescopes. They then created 3D-layered sequence of images of the tornadoes and simulated their evolution with state-of-the-art numerical codes using the magnetic imprints detected by their high-resolution, cutting-edge telescopes. 

The study is published in the current issue of Nature.

Source: University of Sheffield [June 27, 2012]



Related articles

Dwarf planet Ceres may have vanishing ice volcanoes

A recently discovered solitary ice volcano on the dwarf planet Ceres may have some hidden older siblings, say...

A middleweight black hole is hiding at the center of a giant star cluster

All known black holes fall into two categories: small, stellar-mass black holes weighing a few Suns, and supermassive...

Million fold increase in the power of waves near Jupiter’s moon Ganymede

Listening to electro-magnetic waves around the Earth, converted to sound, is almost like listening to singing and chirping...

New look at a bright stellar nursery

This overlay shows radio (orange) and infrared images of a giant molecular cloud called W49A, where new stars...

Understanding star-forming galaxies

The more stars a typical spiral galaxy contains, the faster it makes new ones. Astronomers call this relatively...

Rogue planets could outnumber the stars

An upcoming NASA mission could find that there are more rogue planets - planets that float in space...

Study shows how radioactive decay could support extraterrestrial life

In the icy bodies around our solar system, radiation emitted from rocky cores could break up water molecules...

Mercury’s volcanic activity – or lack of it – could help astronomers find other Earth-like worlds

If you wanted to narrow down the search for Earth-like worlds in a vast universe, how might you...