Plankton turn hunters to survive dinosaur-killing asteroid impact

Date:

Share post:

New research by an international team of scientists shows how marine organisms were forced to ‘reboot’ to survive following the asteroid impact 66 million years ago which killed three quarters of life on earth.

Plankton turn hunters to survive dinosaur-killing asteroid impact
High-resolution scanning electron microscope (SEM) images of fossil cell coverings of nannoplankton
 (coccolithophores) highlighting holes that would have allowed flagella and haptonema to emerge
from the cell and draw in food particles (red dots). We have shown a reconstruction
of one of these ancient cells based on living coccolithophores and related algae
[Credit: Paul Bown]

Researchers from the University of Southampton and UCL, along with colleagues in Paris, California, Bristol and Edinburgh used an exceptional record of plankton fossils and eco-evolutionary modelling techniques to examine how organisms behaved before and after this extinction event – and why some survived and some didn’t.

The team found that prior to the asteroid impact, species of nannoplankton – microscopic algae – were exclusively reliant on harnessing energy from sunlight (photoautotrophs), but those living afterwards were capable of capturing food and eating it in addition to using photosynthesis to feed (mixotrophs). This suggests the blocking of light from the sun played an important role in killing off some species and over time, encouraging others to evolve and adapt.




The research team’s breakthrough came when they found that many of the nannoplankton skeletons (coccospheres) post mass-extinction included a large hole, indicating the position of flagella – tiny tail like structures used by the algae for movement and feeding. This indicates these microscopic organisms, which survived the asteroid strike, were capable of hunting and ingesting food.

“Those species that were lost at the mass extinction show no evidence of a mixotrophic lifestyle and were likely to be completely reliant on sunlight and photosynthesis,” explains Dr Samantha Gibbs of the University of Southampton. “Fossils following the Cretaceous-Paleogene (K-Pg) extinction show that mixotrophy dominated and our model indicates this is because of the exceptional abundance of small prey cells – most likely surviving bacteria – and reduced numbers of larger ‘grazers’ in the post-extinction oceans.”

Plankton turn hunters to survive dinosaur-killing asteroid impact
A SEM view of a seafloor after the extinction showing the abundance of these cells with flagellar
 openings. These cells are around 7 microns in diameter (7/1000ths of a millimetre) with
the scale bars next to each image showing the size of a micron (1/1000th mm)
[Credit: Paul Bown]

Opposing evolutionary forces led to the emergence of more diverse feeding strategies and eventually a return to greater reliance on photosynthesis in open ocean nannoplankton. Most nannoplankton today only photosynthesise. So, what caused this devastating mass extinction of photoautotrophs and other species?




The simple answer is a lack of light. The K/Pg event was triggered by an asteroid impact that formed the Chicxulub crater in Mexico, and is well known for the extinction of dinosaurs, plesiosaurs, ammonites and many other groups.

“This huge impact flung vast amounts of debris, aerosols and soot into the atmosphere, causing darkness, cooling and acidification over days and years,” says Paul Bown, Professor of Micropalaeontology at UCL. “The significant bias found in the nannoplankton extinctions – removal of open-ocean photoautotrophs but survival of mixotrophs that could hunt and feed – can only be fully explained by the darkness caused by the asteroid impact acting as a kill mechanism.”

Plankton turn hunters to survive dinosaur-killing asteroid impact
Graphic explaining the research method and findings
[Credit: Gibbs et al., 2020]

Samantha Gibbs adds: “This ‘blackout’ or shutdown of primary productivity would have been felt across all of Earth’s ecosystems and reveals that the K/Pg event is distinct from all other mass extinctions that have shaped the history of life, both in its rapidity, related to an instantaneous impact event, and its darkness kill mechanism, which shook the foundations of the food chains. The K/Pg boundary event likely represents the only truly geologically instantaneous mass extinction event.”

Findings are published in the journal Science Advances.

Source: University of South Hampton [October 30, 2020]

Support The Archaeology News Network with a small donation!




ADVERTISEMENT

spot_img

Related articles

‘7000 Years of Iranian Art’ to be presented in eight countries

Iran will present 7,000-year civilization in eight countries, Director-General of Iranian Museums Mohammad-Reza Karegar said on Wednesday. Karegar said...

Exhibition at Oriental Institute shows how ancient cultures commemorated the dead

All cultures throughout time have tried to honor and commemorate those they have lost. A new exhibit at...

Ancient Macedonian artefacts coming to Rome for first time

The Vulci Foundation has signed an agreement with the Thessaloniki Archaeological Museum to bring a collection of artefacts...

Neolithic house ruins unearthed in north China

Archaeologists have unearthed 12 house ruins sites dating back to 4,300 to 4,800 years ago in the city...

Rheneia, the other Delos

Rheneia, a small island next to Delos, associated with the history of the births and deaths of its...

National Gallery to host Australia’s first Peruvian art exhibition

The National Gallery of Australia (NGA) in Canberra will host the country's first exhibition of Peruvian art over...

Rich Armenian archaeological heritage to be exhibited in Yerevan

The Armenian archaeological legacy—primarily household ceramics and metal items—that was unearthed from medieval Hostun village will be displayed...

Historical museum features exhibit on indigenous Mississippians

Oh, to travel back several hundred years and observe who and what the land under our feet supported...