Neanderthal DNA contributes to human gene expression


Share post:

The last Neanderthal died 40,000 years ago, but much of their genome lives on, in bits and pieces, through modern humans. The impact of Neanderthals’ genetic contribution has been uncertain: Do these snippets affect our genome’s function, or are they just silent passengers along for the ride? In Cell, researchers report evidence that Neanderthal DNA sequences still influence how genes are turned on or off in modern humans. Neanderthal genes’ effects on gene expression likely contribute to traits such as height and susceptibility to schizophrenia or lupus, the researchers found.

Neanderthal DNA contributes to human gene expression
Neanderthal DNA in modern human genome is still affecting our gene expression 
[Credit: Entressangle/Daynes/SPL]

“Even 50,000 years after the last human-Neanderthal mating, we can still see measurable impacts on gene expression,” says geneticist and study co-author Joshua Akey of the University of Washington School of Medicine. “And those variations in gene expression contribute to human phenotypic variation and disease susceptibility.”

Previous studies have found correlations between Neanderthal genes and traits such as fat metabolism, depression, and lupus risk. However, figuring out the mechanism behind the correlations has proved difficult. DNA can be extracted from fossils and sequenced, but RNA cannot. Without this source of information, scientists can’t be sure exactly if Neanderthal genes functioned differently than their modern human counterparts. They can, however, look to gene expression in modern humans who possess Neanderthal ancestry.

In this study, researchers analyzed RNA sequences in a dataset called the Genotype-Tissue Expression (GTEx) Project, looking for people who carried both Neanderthal and modern human versions of any given gene—one version from each parent. For each such gene, the investigators then compared expression of the two alleles head-to-head in 52 different tissues.

“We find that for about 25% of all those sites that we tested, we can detect a difference in expression between the Neanderthal allele and the modern human allele,” says the study’s first author, UW postdoctoral researcher Rajiv McCoy.

Neanderthal DNA contributes to human gene expression
visual abstract depicts the findings of McCoy et al., who show
genome-wide interrogation of the functional

 differences between modern
human and Neanderthal alleles reveals that Neanderthal-inherited

 are not silent remnants of ancient interbreeding but have a
measurable impact on gene expression 

that may contribute to phenotypic
variation in modern humans [Credit: McCoy et al./Cell 2017]

Expression of Neanderthal alleles tended to be especially low in the brain and the testes, suggesting that those tissues may have experienced more rapid evolution since we diverged from Neanderthals approximately 700,000 years ago. “We can infer that maybe the greatest differences in gene regulation exist in the brain and testes between modern humans and Neanderthals,” says Akey.

One example uncovered by this study is a Neanderthal allele of a gene called ADAMTSL3 that decreases risk of schizophrenia, while also influencing height. “Previous work by others had already suggested that this allele affects alternative splicing. Our results support this molecular model, while also revealing that the causal mutation was inherited from Neanderthals,” says McCoy. Alternative splicing refers to a process in which mRNAs are modified before they leave the cell’s nucleus. When the Neanderthal mutation is present, the cell’s machinery removes a segment of the mRNA that is expressed in the modern human version. The cell ends up making a modified protein because of a single mutation from a Neanderthal ancestor.

The connection between that modified protein, height, and schizophrenia still requires more investigation, but it’s an example of how small differences between modern humans and Neanderthals can contribute to variation in people.

“Hybridization between modern humans and Neanderthals increased genomic complexity,” explains Akey. “Hybridization wasn’t just something that happened 50,000 years ago that we don’t have to worry about anymore. Those little bits and pieces, our Neanderthal relics, are influencing gene expression in pervasive and important ways.”

Next steps may include investigating whether Denisovans—another species of hominins that crossbred with modern humans—are contributing to gene expression, as well as applying the side-by-side method of expression analysis more broadly. For this study, McCoy and his colleagues had to develop a new statistical approach to sift through the immense amount of RNA data, but the same technique could be used to compare gene expression differences between modern human alleles.

Source: Cell Press [February 23, 2017]



Related articles

Scientists solve major piece in the origin of biological complexity

Scientists have puzzled for centuries over how and why multicellular organisms evolved the almost universal trait of using...

Gorillas found to live in ‘complex’ societies, suggesting deep roots of human social evolution

Gorillas have more complex social structures than previously thought, from lifetime bonds forged between distant relations, to "social...

DNA authenticates South American shrunken head

A remarkably well-preserved shrunken head has just been authenticated by DNA analysis, which provides strong evidence that anecdotal...

Gravity data show that Antarctic ice sheet is melting increasingly faster

During the past decade, Antarctica's massive ice sheet lost twice the amount of ice in its western portion...

3-D analysis of dog fossils sheds light on domestication debate

In an effort to settle the debate about the origin of dog domestication, a technique that uses 3-D...

Unknown son of Pakal II recorded in Palenque glyphs

Parting from the reintegration of two fragments from the Northern Tableau of the Temple of the Sun Sanctuary,...

Mayan altars, sculpture discovered in Guatemala

A team of archaeologists in Guatemala has discovered a council house dating back about 700 years with altars,...

Temple of Serapis in Ephesus to be restored

The temple of Serapis at the ancient Greek city of Ephesus in what is today modern Turkey's Izmir...