NASA study of clays suggests watery Mars underground

Date:

Share post:

A new NASA study suggests if life ever existed on Mars, the longest lasting habitats were most likely below the Red Planet’s surface. 

Impact cratering and erosion combine to reveal the composition of the Martian underground by exposing materials from the subsurface [Credit: NASA/JPL-Caltech/JHUAPL]

A new interpretation of years of mineral-mapping data, from more than 350 sites on Mars examined by European and NASA orbiters, suggests Martian environments with abundant liquid water on the surface existed only during short episodes. These episodes occurred toward the end of a period of hundreds of millions of years during which warm water interacted with subsurface rocks. This has implications about whether life existed on Mars and how the Martian atmosphere has changed. 

“The types of clay minerals that formed in the shallow subsurface are all over Mars,” said John Mustard, professor at Brown University in Providence, R.I. Mustard is a co-author of the study in the journal Nature. “The types that formed on the surface are found at very limited locations and are quite rare.” 

Discovery of clay minerals on Mars in 2005 indicated the planet once hosted warm, wet conditions. If those conditions existed on the surface for a long era, the planet would have needed a much thicker atmosphere than it has now to keep the water from evaporating or freezing. Researchers have sought evidence of processes that could cause a thick atmosphere to be lost over time. 

This new study supports an alternative hypothesis that persistent warm water was confined to the subsurface and many erosional features were carved during brief periods when liquid water was stable at the surface. 

“If surface habitats were short-term, that doesn’t mean we should be glum about prospects for life on Mars, but it says something about what type of environment we might want to look in,” said the report’s lead author, Bethany Ehlmann, assistant professor at the California Institute of Technology, Pasadena, and scientist at NASA’s Jet Propulsion Laboratory, also in Pasadena. “The most stable Mars habitats over long durations appear to have been in the subsurface. On Earth, underground geothermal environments have active ecosystems.” 

The discovery of clay minerals by the OMEGA spectrometer on the European Space Agency’s Mars Express orbiter added to earlier evidence of liquid Martian water. Clays form from the interaction of water with rock. Different types of clay minerals result from different types of wet conditions. 

During the past five years, researchers used OMEGA and NASA’s Compact Reconnaissance Imaging Spectrometer, or CRISM, instrument on the Mars Reconnaissance Orbiter to identify clay minerals at thousands of locations on Mars. Clay minerals that form where the ratio of water interacting with rock is small generally retain the same chemical elements as those found in the original volcanic rocks later altered by the water. 

The study interprets this to be the case for most terrains on Mars with iron and magnesium clays. In contrast, surface environments with higher ratios of water to rock can alter rocks further. Soluble elements are carried off by water, and different aluminum-rich clays form. 

Another clue is detection of a mineral called prehnite. It forms at temperatures above about 400 degrees Fahrenheit (about 200 degrees Celsius). These temperatures are typical of underground hydrothermal environments rather than surface waters. 

“Our interpretation is a shift from thinking that the warm, wet environment was mostly at the surface to thinking it was mostly in the subsurface, with limited exceptions,” said Scott Murchie of Johns Hopkins University Applied Physics Laboratory in Laurel, Md., a co-author of the report and principal investigator for CRISM. 

One of the exceptions may be Gale Crater, the site targeted by NASA’s Mars Science Laboratory mission. Launching this year, the mission’s Curiosity rover will land and investigate layers that contain clay and sulfate minerals. 

NASA’s Mars Atmosphere and Volatile Evolution Mission, or MAVEN, in development for a 2013 launch, may provide evidence for or against this new interpretation of the Red Planet’s environmental history. The report predicts MAVEN findings consistent with the atmosphere not having been thick enough to provide warm, wet surface conditions for a prolonged period.  

JPL, a division of Caltech, manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate in Washington. APL provided and operates CRISM. For more information about the Mars Reconnaissance Orbiter, visit: http://www.nasa.gov/mro and http://mars.jpl.nasa.gov/mro 

Source: NASA/Jet Propulsion Laboratory [November 02, 2011]

ADVERTISEMENT

spot_img

Related articles

Heavy metal vapours unexpectedly found in comets throughout our Solar System – and beyond

A new study by a Belgian team using data from the European Southern Observatory's Very Large Telescope (ESO's...

Hunting for the supermassive black hole seeds

Recent observations have shown that there is a supermassive black hole at the center of each galaxy. However,...

Saturn’s famous hexagon may tower above the clouds

The long-lived international Cassini mission has revealed a surprising feature emerging at Saturn's northern pole as it nears...

Star formation in galactic centres

Stars form from the gas and dust in molecular clouds via a series of complex processes that are...

Why is this weird, metallic star hurtling out of the Milky Way?

About 2,000 light-years away from Earth, there is a star catapulting toward the edge of the Milky Way....

Giant impacts caused by interplanetary collisions

Astronomers have found fresh evidence for significant planetary diversity within a single exoplanet system, suggesting that giant high-speed...

Million fold increase in the power of waves near Jupiter’s moon Ganymede

Listening to electro-magnetic waves around the Earth, converted to sound, is almost like listening to singing and chirping...

Telescopes and spacecraft join forces to probe deep into Jupiter’s atmosphere

NASA's Hubble Space Telescope and the ground-based Gemini Observatory in Hawaii have teamed up with the Juno spacecraft...