Latitude and rain dictated where species lived

Date:

Share post:

Aggregating nearly the entire landmass of Earth, Pangaea was a continent the likes our planet has not seen for the last 200 million years. Its size meant there was a lot of space for animals to roam, for there were few geographical barriers, such as mountains or ice caps, to contain them. 

More than 200 million years ago, mammals and reptiles lived in their own separate worlds on the supercontinent Pangaea, despite little geographical incentive to do so. Mammals lived in areas of twice-yearly seasonal rainfall; reptiles stayed in areas where rains came just once a year. Mammals lose more water when they excrete, and thus need water-rich environments to survive [Credit: Brown University]

Yet, strangely, animals confined themselves. Studying a transect of Pangaea stretching from about three degrees south to 26 degrees north (a long swath in the center of the continent covering tropical and semiarid temperate zones), a team of scientists led by Jessica Whiteside at Brown University has determined that reptiles, represented by a species called procolophonids, lived in one area, while mammals, represented by a precursor species called traversodont cynodonts, lived in another. Though similar in many ways, their paths evidently did not cross. 

“We’re answering a question that goes back to Darwin’s time,” said Whiteside, assistant professor of geological sciences at Brown, who studies ancient climates. “What controls where organisms live? The two main constraints are geography and climate.” 

Turning to climate, the frequency of rainfall along lines of latitude directly influenced where animals lived, the scientists write in a paper published this week in the online early edition of the Proceedings of the National Academy of Sciences. In the tropical zone where the mammal-relative traversodont cynodonts lived, monsoon-like rains fell twice a year. But farther north on Pangaea, in the temperate regions where the procolophonids predominated, major rains occurred only once a year. It was the difference in the precipitation, the researchers conclude, that sorted the mammals’ range from that of the reptiles. 

The scientists focused on an important physiological difference between the two: how they excrete. Mammals lose water when they excrete and need to replenish what they lose. Reptiles (and birds) get rid of bodily waste in the form of uric acid in a solid or semisolid form that contains very little water. 

The skull of Procolophonid Hypsognathus was found in Fundy basin, Nova Scotia, which was hotter and drier. Mammals, which needed more water, chose to live elsewhere [Credit: Brown University]

On Pangaea, the mammals needed a water-rich area, so the availability of water played a decisive role in determining where they lived. “It’s interesting that something as basic as how the body deals with waste can restrict the movement of an entire group,” Whiteside said. 

In water-limited areas, “the reptiles had a competitive advantage over mammals,” Whiteside said. She thinks the reptiles didn’t migrate into the equatorial regions because they already had found their niche. 

The researchers compiled a climate record for Pangaea during the late Triassic period, from 234 million years ago to 209 million years ago, using samples collected from lakes and ancient rift basins stretching from modern-day Georgia to Nova Scotia. Pangaea was a hothouse then: Temperatures were about 20 degrees Celsius hotter in the summer, and atmospheric carbon dioxide was five to 20 times greater than today. Yet there were regional differences, including rainfall amounts. 

The researchers base the rainfall gap on variations in the Earth’s precession, or the wobble on its axis, coupled with the eccentricity cycle, based on the Earth’s orbital position to the sun. Together, these Milankovitch cycles influence how much sunlight, or energy, reaches different areas of the planet. During the late Triassic, the equatorial regions received more sunlight, thus more energy to generate more frequent rainfall. The higher latitudes, with less total sunlight, experienced less rain. 

The research is important because climate change projections shows areas that would receive less precipitation, which could put mammals there under stress. 

“There is evidence that climate change over the last 100 years has already changed the distribution of mammal species,” said Danielle Grogan, a graduate student in Whiteside’s research group. “Our study can help us predict negative climate effects on mammals in the future.” 

Contributing authors include Grogan, Paul Olsen from Columbia University, and Dennis Kent from Rutgers. The National Science Foundation and the Richard Salomon Foundation funded the research. 

Source: Brown University [May 12, 2011]

ADVERTISEMENT

spot_img

Related articles

X-ray gun reveals Aboriginal rock art

When an artefact must be destroyed in order to reveal the secrets it holds, you might say researchers...

Ancient Incan mummy had lung infection

A 500-year-old frozen Incan mummy suffered from a bacterial lung infection at the time of its death, as...

Evidence for ancient bone surgery found at Peru’s Kuelap Fortress

A study by the University of Florida published in the International Journal of Paleopathology claims to have discovered...

A deeper look at Centaurus A

Centaurus A, also known as NGC 5128, is a peculiar massive elliptical galaxy with a supermassive black hole...

Propping up Egypt’s oldest pyramid

Structural repair and reinforcement systems company Cintec has been appointed to grand task of preserving the Step Pyramid...

As elephants go, so go the trees

Overhunting has been disastrous for elephants, but their forest habitats have also been caught in the crossfire. Elephants in...

Scientists sequence asexual tiny worm whose lineage stretches back 18 million years

A team of scientists has sequenced, for the first time, a tiny worm that belongs to a group...

Will more snow over Antarctica offset rising seas? Don’t count on it

Many factors related to warming will conspire to raise the planet's oceans over coming decades—thermal expansion of the...