Hubble makes surprising find in the early universe

Date:

Share post:

New results from the NASA/ESA Hubble Space Telescope suggest the formation of the first stars and galaxies in the early Universe took place sooner than previously thought. A European team of astronomers have found no evidence of the first generation of stars, known as Population III stars, as far back as when the Universe was just 500 million years old.

Hubble makes surprising find in the early universe
New results from the NASA/ESA Hubble Space Telescope suggest the formation of the first stars and galaxies in the early
Universe took place sooner than previously thought. A European team of astronomers have found no evidence
of the first generation of stars, known as Population III stars, when the Universe was less than one billion
years old. This artist’s impression presents the early Universe [Credit: ESA/Hubble, M. Kornmesser]

The exploration of the very first galaxies remains a significant challenge in modern astronomy. We do not know when or how the first stars and galaxies in the Universe formed. These questions can be addressed with the Hubble Space Telescope through deep imaging observations. Hubble allows astronomers to view the Universe back to within 500 million years of the Big Bang.




A team of European researchers, led by Rachana Bhatawdekar of the European Space Agency, set out to study the first generation of stars in the early Universe. Known as Population III stars, these stars were forged from the primordial material that emerged from the Big Bang. Population III stars must have been made solely out of hydrogen, helium and lithium, the only elements that existed before processes in the cores of these stars could create heavier elements, such as oxygen, nitrogen, carbon and iron.

Bhatawdekar and her team probed the early Universe from about 500 million to 1 billion years after the Big Bang by studying the cluster MACSJ0416 and its parallel field with the Hubble Space Telescope (with supporting data from NASA’s Spitzer Space Telescope and the ground-based Very Large Telescope of the European Southern Observatory). “We found no evidence of these first-generation Population III stars in this cosmic time interval” said Bhatawdekar of the new results.

Hubble makes surprising find in the early universe
Galaxy Cluster MACSJ0416 [Credit: NASA, ESA, & M. Montes
(University of New South Wales, Sydney, Australia)]

The result was achieved using the Hubble’s Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys, as part of the Hubble Frontier Fields programme. This programme (which observed six distant galaxy clusters from 2012 to 2017) produced the deepest observations ever made of galaxy clusters and the galaxies located behind them which were magnified by the gravitational lensing effect, thereby revealing galaxies 10 to 100 times fainter than any previously observed. The masses of foreground galaxy clusters are large enough to bend and magnify the light from the more distant objects behind them. This allows Hubble to use these cosmic magnifying glasses to study objects that are beyond its nominal operational capabilities.




Bhatawdekar and her team developed a new technique that removes the light from the bright foreground galaxies that constitute these gravitational lenses. This allowed them to discover galaxies with lower masses than ever previously observed with Hubble, at a distance corresponding to when the Universe was less than a billion years old.

At this point in cosmic time, the lack of evidence for exotic stellar populations and the identification of many low-mass galaxies supports the suggestion that these galaxies are the most likely candidates for the reionisation of the Universe. This period of reionisation in the early Universe is when the neutral intergalactic medium was ionised by the first stars and galaxies.

“These results have profound astrophysical consequences as they show that galaxies must have formed much earlier than we thought,” said Bhatawdekar. “This also strongly supports the idea that low-mass/faint galaxies in the early Universe are responsible for reionisation.”

These results also suggest that the earliest formation of stars and galaxies occurred much earlier than can be probed with the Hubble Space Telescope. This leaves an exciting area of further research for the upcoming NASA/ESA/CSA James Webb Space Telescope — to study the Universe’s earliest galaxies.

The findings are published in Monthly Notices of the Royal Astronomical Society.

Source: ESA/Hubble Information Centre [June 03, 2020]

ADVERTISEMENT

spot_img

Related articles

An origin story for a family of oddball meteorites

Most meteorites that have landed on Earth are fragments of planetesimals, the very earliest protoplanetary bodies in the...

EXPRES looks to the skies of a scorching, distant planet

Yale technology is giving astronomers a closer look at the atmosphere of a distant planet where it's so...

Search for ‘dark energy’ could illuminate origin, evolution, fate of universe

The universe we see is only the very tip of the vast cosmic iceberg. The hundreds of billions...

Extinct atom reveals the long-kept secrets of the solar system

Using the extinct niobium-92 atom, ETH researchers have been able to date events in the early solar system...

Black holes: Scientists ‘excited’ by observations suggesting formation scenarios

Physicists have described how observations of gravitational waves limit the possible explanations for the formation of black holes...

VLA Sky Survey reveals newborn jets in distant galaxies

Astronomers using data from the ongoing VLA Sky Survey (VLASS) have found a number of distant galaxies with...

Researchers observe iron in exoplanetary atmosphere

An international team of researchers, led by astronomers from the University of Amsterdam, has directly demonstrated the presence...

NASA space telescopes provide a 3-D journey through the Orion Nebula

Astronomers and visualization specialists from NASA's Universe of Learning program have combined visible and infrared vision of the...