Hubble discovers hydrogen-burning white dwarfs enjoying slow aging

Date:

Share post:

Could dying stars hold the secret to looking younger? New evidence from the NASA/ESA Hubble Space Telescope suggests that white dwarfs could continue to burn hydrogen in the final stages of their lives, causing them to appear more youthful than they actually are. This discovery could have consequences for how astronomers measure the ages of star clusters.

Hubble discovers hydrogen-burning white dwarfs enjoying slow aging
To investigate the physics underpinning white dwarf evolution, astronomers compared cooling
white dwarfs in two massive collections of stars: the globular clusters M3 and M13. These two
 clusters share many physical properties such as age and metallicity but the populations
of stars which will eventually give rise to white dwarfs are different. This makes M3
and M13 together a perfect natural laboratory in which to test how different
populations of white dwarfs cool [Credit: ESA/Hubble &
NASA, G. Piotto et]

The prevalent view of white dwarfs as inert, slowly cooling stars has been challenged by observations from the NASA/ESA Hubble Space Telescope. An international group of astronomers have discovered the first evidence that white dwarfs can slow down their rate of aging by burning hydrogen on their surface.

“We have found the first observational evidence that white dwarfs can still undergo stable thermonuclear activity,” explained Jianxing Chen of the Alma Mater Studiorum Universita di Bologna and the Italian National Institute for Astrophysics, who led this research. “This was quite a surprise, as it is at odds with what is commonly believed.”




White dwarfs are the slowly cooling stars which have cast off their outer layers during the last stages of their lives. They are common objects in the cosmos; roughly 98% of all the stars in the Universe will ultimately end up as white dwarfs, including our own Sun. Studying these cooling stages helps astronomers understand not only white dwarfs, but also their earlier stages as well.

To investigate the physics underpinning white dwarf evolution, astronomers compared cooling white dwarfs in two massive collections of stars: the globular clusters M3 and M13 . These two clusters share many physical properties such as age and metallicity but the populations of stars which will eventually give rise to white dwarfs are different. In particular, the overall color of stars at an evolutionary stage known as the Horizontal Branch are bluer in M13, indicating a population of hotter stars. This makes M3 and M13 together a perfect natural laboratory in which to test how different populations of white dwarfs cool.

“The superb quality of our Hubble observations provided us with a full view of the stellar populations of the two globular clusters,” continued Chen. “This allowed us to really contrast how stars evolve in M3 and M13.”

Using Hubble’s Wide Field Camera 3 the team observed M3 and M13 at near-ultraviolet wavelengths, allowing them to compare more than 700 white dwarfs in the two clusters. They found that M3 contains standard white dwarfs which are simply cooling stellar cores. M13, on the other hand, contains two populations of white dwarfs: standard white dwarfs and those which have managed to hold on to an outer envelope of hydrogen, allowing them to burn for longer and hence cool more slowly.

Comparing their results with computer simulations of stellar evolution in M13, the researchers were able to show that roughly 70% of the white dwarfs in M13 are burning hydrogen on their surfaces, slowing down the rate at which they are cooling.




This discovery could have consequences for how astronomers measure the ages of stars in the Milky Way. The evolution of white dwarfs has previously been modeled as a predictable cooling process. This relatively straightforward relationship between age and temperature has led astronomers to use the white dwarf cooling rate as a natural clock to determine the ages of star clusters, particularly globular and open clusters. However, white dwarfs burning hydrogen could cause these age estimates to be inaccurate by as much as 1 billion years.

“Our discovery challenges the definition of white dwarfs as we consider a new perspective on the way in which stars get old,” added Francesco Ferraro of the Alma Mater Studiorum Universita di Bologna and the Italian National Institute for Astrophysics, who coordinated the study. “We are now investigating other clusters similar to M13 to further constrain the conditions which drive stars to maintain the thin hydrogen envelope which allows them to age slowly.”

The study is published in Nature Astronomy.

Source: ESA/Hubble Information Centre [September 06, 2021]

Support The Archaeology News Network with a small donation!




ADVERTISEMENT

spot_img

Related articles

Tiny distortions in universe’s oldest light reveal clearer picture of strands in cosmic web

Scientists have decoded faint distortions in the patterns of the universe’s earliest light to map huge tubelike structures...

10 million star puzzle

When observed with the unaided eye, Omega Centauri, the object in this image, appears as a fuzzy, faint...

Blowing in the stellar wind: Scientists reduce the chances of life on exoplanets in so-called habitable zones

Is there life beyond Earth in the cosmos? Astronomers looking for signs have found that our Milky Way...

New model can predict carbon cycle presence on exoplanets

Life thrives at stable temperatures. On Earth, this is facilitated by the carbon cycle. Scientists at SRON, VU...

NSF’s newest solar telescope produces first images, most detailed images of the sun

Just released first images from the National Science Foundation's Daniel K. Inouye Solar Telescope reveal unprecedented detail of...

Asteroids and comets shower Mars with organics

Asteroids and comets appear to be a much more important supplier of organic molecules on Mars than expected....

Discovered: fast-growing galaxies from early universe

A team of astronomers including Carnegie's Eduardo Banados and led by Roberto Decarli of the Max Planck Institute...

Mars Express to relay first science data from Mars Curiosity

For 15 minutes, the NASA rover will transmit scientific data up to MEX, which will store it on...