How much longer will the oxygen-rich atmosphere be sustained on Earth?


Share post:

Earth’s surface environments are highly oxygenated – from the atmosphere to the deepest reaches of the oceans, representing a hallmark of active photosynthetic biosphere. However, the fundamental timescale of the oxygen-rich atmosphere on Earth remains uncertain, particularly for the distant future. Solving this question has great ramifications not only for the future of Earth’s biosphere but for the search for life on Earth-like planets beyond the solar system.

How much longer will the oxygen-rich atmosphere be sustained on Earth?
Credit: iStockphoto

A new study published in Nature Geoscience this week tackles this problem using a numerical model of biogeochemistry and climate and reveals that the future lifespan of Earth’s oxygen-rich atmosphere is approximately one billion years.

“For many years, the lifespan of Earth’s biosphere has been discussed based on scientific knowledge about the steadily brightening of the sun and global carbonate-silicate geochemical cycle. One of the corollaries of such a theoretical framework is a continuous decline in atmospheric CO2 levels and global warming on geological timescales. Indeed, it is generally thought that Earth’s biosphere will come to an end in the next 2 billion years due to the combination of overheating and CO2 scarcity for photosynthesis. If true, one can expect that atmospheric O2 levels will also eventually decreases in the distant future. However, it remains unclear exactly when and how this will occur,” says Kazumi Ozaki, Assistant Professor at Toho University.

To examine how Earth’s atmosphere will evolve in the future, Ozaki and Christopher Reinhard, Associate Professor at Georgia Institute of Technology, constructed an Earth system model which simulates climate and biogeochemical processes. Because modelling future Earth evolution intrinsically has uncertainties in geological and biological evolutions, a stochastic approach was adopted, enabling the researchers to obtain a probabilistic assessment of the lifespan of an oxygenated atmosphere. Ozaki ran the model more than 400 thousand times, varying model parameter, and found that Earth’s oxygen-rich atmosphere will probably persist for another one billion years (1.08±0.14 (1σ) billion years) before rapid deoxygenation renders the atmosphere reminiscent of early Earth before the Great Oxidation Event around 2.5 billion years ago.

“The atmosphere after the great deoxygenation is characterized by an elevated methane, low-levels of CO2, and no ozone layer. The Earth system will probably be a world of anaerobic life forms,” says Ozaki.

Earth’s oxygen-rich atmosphere represents an important sign of life that can be remotely detectable. However, this study suggests that Earth’s oxygenated atmosphere would not be a permanent feature, and that the oxygen-rich atmosphere might only be possible for 20-30% of the Earth’s entire history as an inhabited planet. Oxygen (and photochemical byproduct, ozone) is most accepted biosignature for the search for life on the exoplanets, but if we can generalize this insight to Earth-like planets, then scientists need to consider additional biosignatures applicable to weakly-oxygenated and anoxic worlds in the search for life beyond our solar system.

Source: Toho University [March 02, 2021]

Support The Archaeology News Network with a small donation!



Related articles

Fossil forests under Antarctic ice

In around 1833 the first specimens of fossilized wood from Antarctica were reported by surgeon, naturalist and artist...

Fossil leaves show high atmospheric carbon spurred ancient ‘global greening’

Scientists studying leaves from a 23-million-year-old forest have for the first time linked high levels of atmospheric carbon...

Researchers identify evidence of oldest orchid fossil on record

The orchid family has some 28,000 species -- more than double the number of bird species and quadruple...

Early dinosaurs may have lived in social herds as early as 193 million years ago

To borrow a line from the movie "Jurassic Park:" Dinosaurs do move in herds. And a new study...

Ediacara Biota flourished in bacterially rich marine habitats

Some of the earliest animals on Earth were soft-bodied ocean-dwellers that ranged from a few inches to several...

Plesiosaur fossils found in the Sahara suggest they weren’t just marine animals

Fossils of small plesiosaurs, long-necked marine reptiles from the age of dinosaurs, have been found in a 100-million...

A 508-million-year-old sea predator with a ‘jackknife’ head

Paleontologists at the University of Toronto (U of T) and the Royal Ontario Museum (ROM) in Toronto have...

Ancient spider fossils, surprisingly preserved in rock, reveal reflective eyes

Usually, soft-bodied species like spiders aren't fossilized in rock like animals with bones and teeth. More often, ancient...