Fossil footprints found on Greek island of Crete challenge established theories of human evolution


Share post:

Newly discovered human-like footprints from Crete may put the established narrative of early human evolution to the test. The footprints are approximately 5.7 million years old and were made at a time when previous research puts our ancestors in Africa — with ape-like feet.

Fossil footprints found on Greek island of Crete challenge established theories of human evolution
The footprints were discovered by Gerard Gierlinski  by chance when he was on holiday on Crete in 2002. Gierlinski,
 a paleontologist at the Polish Geological Institute specialized in footprints, identified the footprints as mammal but 
did not interpret them further at the time. In 2010 he returned to the site together with Grzegorz Niedzwiedzki, 
a Polish paleontologist now at Uppsala University, to study the footprints in detail. Together they came
 to the conclusion that the footprints were made by hominins [Credit: Andrzej Boczarowski]

Ever since the discovery of fossils of Australopithecus in South and East Africa during the middle years of the 20th century, the origin of the human lineage has been thought to lie in Africa. More recent fossil discoveries in the same region, including the iconic 3.7 million year old Laetoli footprints from Tanzania which show human-like feet and upright locomotion, have cemented the idea that hominins (early members of the human lineage) not only originated in Africa but remained isolated there for several million years before dispersing to Europe and Asia. The discovery of approximately 5.7 million year old human-like footprints from Crete, published online this week by an international team of researchers, overthrows this simple picture and suggests a more complex reality.

Human feet have a very distinctive shape, different from all other land animals. The combination of a long sole, five short forward-pointing toes without claws, and a hallux (“big toe”) that is larger than the other toes, is unique. The feet of our closest relatives, the great apes, look more like a human hand with a thumb-like hallux that sticks out to the side. The Laetoli footprints, thought to have been made by Australopithecus, are quite similar to those of modern humans except that the heel is narrower and the sole lacks a proper arch. By contrast, the 4.4 million year old Ardipithecus ramidus from Ethiopia, the oldest hominin known from reasonably complete fossils, has an ape-like foot. The researchers who described Ardipithecus argued that it is a direct ancestor of later hominins, implying that a human-like foot had not yet evolved at that time.

Fossil footprints found on Greek island of Crete challenge established theories of human evolution
The footprints from Trachilos in western Crete [Credit: Andrzej Boczarowski]

The new footprints, from Trachilos in western Crete, have an unmistakably human-like form. This is especially true of the toes. The big toe is similar to our own in shape, size and position; it is also associated with a distinct ‘ball’ on the sole, which is never present in apes. The sole of the foot is proportionately shorter than in the Laetoli prints, but it has the same general form. In short, the shape of the Trachilos prints indicates unambiguously that they belong to an early hominin, somewhat more primitive than the Laetoli trackmaker. They were made on a sandy seashore, possibly a small river delta, whereas the Laetoli tracks were made in volcanic ash. ‘What makes this controversial is the age and location of the prints,’ says Professor Per Ahlberg at Uppsala University, last author of the study.

At approximately 5.7 million years, they are younger than the oldest known fossil hominin, Sahelanthropus from Chad, and contemporary with Orrorin from Kenya, but more than a million years older than Ardipithecus ramidus with its ape-like feet. This conflicts with the hypothesis that Ardipithecus is a direct ancestor of later hominins. Furthermore, until this year, all fossil hominins older than 1.8 million years (the age of early Homo fossils from Georgia) came from Africa, leading most researchers to conclude that this was where the group evolved. However, the Trachilos footprints are securely dated using a combination of foraminifera (marine microfossils) from over- and underlying beds, plus the fact that they lie just below a very distinctive sedimentary rock formed when the Mediterranean sea briefly dried out, 5.6 millon years ago. By curious coincidence, earlier this year, another group of researchers reinterpreted the fragmentary 7.2 million year old primate Graecopithecus from Greece and Bulgaria as a hominin. Graecopithecus is only known from teeth and jaws.

Fossil footprints found on Greek island of Crete challenge established theories of human evolution
The footprints [Credit: Matthew Robert Bennett & Per Ahlberg]

During the time when the Trachilos footprints were made, a period known as the late Miocene, the Sahara Desert did not exist; savannah-like environments extended from North Africa up around the eastern Mediterranean. Furthermore, Crete had not yet detached from the Greek mainland. It is thus not difficult to see how early hominins could have ranged across south-east Europe and well as Africa, and left their footprints on a Mediterranean shore that would one day form part of the island of Crete.

‘This discovery challenges the established narrative of early human evolution head-on and is likely to generate a lot of debate. Whether the human origins research community will accept fossil footprints as conclusive evidence of the presence of hominins in the Miocene of Crete remains to be seen,’ says Per Ahlberg.

The findings have been published in Proceedings of the Geologists’ Association.

Source: Uppsala University [August 31, 2017]


  1. This seems to show a primate of some sort walking on its hind legs but that is a long, long way from being a human footprint. I've even wondered if it had curled its "fingers/toes" under a bit. In any even the dimensions are way off for a human.

    • Yes, these bipedal footprints are not very "human". But an upright spine is not only seen in Homo or Australopithecus as traditionally often assumed, but probably in most if not all Mio-Pliocene hominoids: humans & gibbons are 'still' orthograde (upright), and not only Morotopithecus (c 20 or 18 Ma) or Oreopithecus (c 8 or 6 Ma) but most fossil hominoids (including in Africa Ardipithecus, Sahelanthropus, Orrorin, Praeanthropus & Australopithecus) seem to have had vertical spines, not for running over open plains after antelopes of course, but e.g. for climbing vertically or wading on 2 legs in the swamp forests & wetlands were most hominoids fosslized, google e.g. "Ape and Human Evolution 2018 biology vs anthropocentrism". The Trachilos footprints were made where a small river reached the beach, the prints were not from A to B, but criss-cross: their makers might have been beach-combing for littoral foods.

  2. Thanks a lot for this. 🙂 It's not unexpected. Already in 2002 we argued in TREE that many Miocene apes might have been bipedal (M.Verhaegen, P-F.Puech & S.Munro 2002 "Aquarboreal ancestors?" Trends Ecol.Evol.17:212-7). IOW, there's no need for a very close relationship of the Trachilos prints with human ancestors. And C.Coon in the 1950s already remarked that prenatal chimps have humanlike feet, which near birth become handlike, this suggests they (like we) had ancestors with forward pointing big-toes (but also narrow heels as in the Trachilos prints).



Related articles

Intense wind found in the neighbourhood of a black hole

An international team of astrophysicists, including Professor Phil Charles from the University of Southampton, have detected an intense...

Previously unknown global ecological disaster discovered

There have been several mass extinctions in the history of Earth with adverse consequences for the environment. Researchers...

Medieval copper smelter find is Norway’s oldest

A rushing river in Nord-Trøndelag County, near the Swedish border, is slowly giving up its secrets.This summer, archaeologists...

One of world’s earliest Christian charms found

A 1,500 year old papyrus fragment found in The University of Manchester’s John Rylands Library has been identified...

More on European languages linked to migration from the east

UAB has participated in a research published in Nature which identified a massive migration of Kurgan populations (Yamna...

Tracking the rapid evolutionary rise of ray-finned fish

Mass extinctions, like lotteries, result in a multitude of losers and a few lucky winners. This is the...

Public maps out an A to Z of galaxies

Volunteers participating in the Galaxy Zoo project have been helping scientists gain new insights by classifying galaxies seen...

Chaos on a watery world

Jupiter’s moon Europa is brimming with water. Although it is thought to be mostly made up of rocky...