Final kiss of two stars heading for catastrophe


Share post:

Using ESO’s Very Large Telescope, an international team of astronomers have found the hottest and most massive double star with components so close that they touch each other. The two stars in the extreme system VFTS 352 could be heading for a dramatic end, during which the two stars either coalesce to create a single giant star, or form a binary black hole.

Final kiss of two stars heading for catastrophe
Artist’s impression of the hottest and most massive 
touching double star [Credit: ESO]

The double star system VFTS 352 is located about 160,000 light-years away in the Tarantula Nebula [1]. This remarkable region is the most active nursery of new stars in the nearby Universe and new observations from ESO’s VLT [2] have revealed that this pair of young stars is among the most extreme and strangest yet found.

VFTS 352 is composed of two very hot, bright and massive stars that orbit each other in little more than a day. The centres of the stars are separated by just 12 million kilometres [3]. In fact, the stars are so close that their surfaces overlap and a bridge has formed between them. VFTS 352 is not only the most massive known in this tiny class of “overcontact binaries” — it has a combined mass of about 57 times that of the Sun — but it also contains the hottest components — with surface temperatures above 40,000 degrees Celsius.

Extreme stars like the two components of VFTS 352, play a key role in the evolution of galaxies and are thought to be the main producers of elements such as oxygen. Such double stars are also linked to exotic behaviour such as that shown by “vampire stars,” where a smaller companion star sucks matter from the surface of its larger neighbour.

Final kiss of two stars heading for catastrophe
Location of VFTS 352 in the Large Magellanic Cloud 
[Credit: ESO]

In the case of VFTS 352, however, both stars in the system are of almost identical size. Material is, therefore, not sucked from one to another, but instead may be shared [4]. The component stars of VFTS 352 are estimated to be sharing about 30 per cent of their material.

Such a system is very rare because this phase in the life of the stars is short, making it difficult to catch them in the act. Because the stars are so close together, astronomers think that strong tidal forces lead to enhanced mixing of the material in the stellar interiors.

“The VFTS 352 is the best case yet found for a hot and massive double star that may show this kind of internal mixing,” explains lead author Leonardo A. Almeida of the University of São Paulo, Brazil. “As such it’s a fascinating and important discovery.”

Astronomers predict that VFTS 352 will face a cataclysmic fate in one of two ways. The first potential outcome is the merging of the two stars, which would likely produce a rapidly rotating, and possibly magnetic, gigantic single star. “If it keeps spinning rapidly it might end its life in one of the most energetic explosions in the Universe, known as a long-duration gamma-ray burst,” says the lead scientist of the project, Hugues Sana, of the University of Leuven in Belgium [5].

This zoom sequence starts with a broad panorama of the southern night sky and closes
 in on the Tarantula star-forming region in the Large Magellanic Cloud. Among the many
 hot young stars here lies VFTS 352 — the hottest and most massive double star system
 to date where the two components are in contact and sharing material. The final frames
 show a close-up of the region of this exotic object, in an image created from images
 from the Wide Field Imager at the MPG/ESO 2.2-metre telescope at La Silla 
[Credit: ESO/N. Risinger ( Gendler Music Johan B Monell]

The second possibility is explained by the lead theoretical astrophysicist in the team, Selma de Mink of University of Amsterdam: “If the stars are mixed well enough, they both remain compact and the VFTS 352 system may avoid merging. This would lead the objects down a new evolutionary path that is completely different from classic stellar evolution predictions. In the case of VFTS 352, the components would likely end their lives in supernova explosions, forming a close binary system of black holes. Such a remarkable object would be an intense source of gravitational waves.”

Proving the existence of this second evolutionary path [6] would be an observational breakthrough in the field of stellar astrophysics. But, regardless of how VFTS 352 meets its demise, this system has already provided astronomers with valuable new insights into the poorly understood evolutionary processes of massive overcontact binary star systems.

This research is published in the Astrophysical Journal.


[1] This star’s name indicates that it was observed as part of the VLT FLAMES Tarantula Survey, which utilised the FLAMES and GIRAFFE instruments on ESO’s Very Large Telescope (VLT) to study over 900 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). The survey has already led to many exciting and important findings including the fastest rotating star, and an extremely massive solitary runaway star. It is helping to answer many fundamental questions concerning how massive stars are affected by rotation, binarity and the dynamics in dense star clusters.

[2] This study also used brightness measurements of VFTS 352 over a period of twelve years made as part of the OGLE survey.

[3] Both components are classed as O-type stars. Such stars are typically between 15 and 80 times more massive than the Sun and can be up to a million times brighter. They are so hot that they shine with a brilliant blue-white light and have surface temperatures over 30,000 degrees Celsius.

[4] These regions around the stars are known as Roche lobes. In an overcontact binary such as VFTS 352 both stars overfill their Roche lobes.

[5] Gamma-ray Bursts (GRBs) are bursts of highly energetic gamma rays that are detected by orbiting satellites. They come in two types — short duration (shorter than a few seconds), and long duration (longer than a few seconds). Long-duration GRBs are more common and are thought to mark the deaths of massive stars and be associated with a class of very energetic supernova explosions.

[6] Predicted by Einstein’s theory of general relativity, gravitational waves are ripples in the fabric of space and time. Significant gravitational waves are generated whenever there are extreme variations of strong gravitational fields with time, such as during the merger of two black holes.

Source: ESO [October 21, 2015]



Related articles

Paleobiologists make intriguing new discoveries about dinosaurs’ ancestors

Dinosaurs emerged in Triassic, a geological period of the Mesozoic era which started 252 Mya. It was then...

The ibex code: deciphering Iran’s ancient rock art

An Iranian archaeologist has spent years in an almost single-handed quest across the country's hills and desert plains...

Coldest brown dwarfs blur lines between stars and planets

Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of...

Iraq battle pits oil against antiquities

Babylon's Hanging Gardens were one of the Seven Wonders of the Ancient World, but heritage appears to be...

Nearest bright ‘hypervelocity star’ found

A University of Utah-led team discovered a "hypervelocity star" that is the closest, second-brightest and among the largest...

3,000-year-old cave paintings found in southern India

Paintings that are over 3,000 years old, belonging to the Sangam period, showcasing the love and valour of...

Ancient tombs destroyed by subway construction in SE China

Five ancient tombs were destroyed overnight in Guangzhou's Luogang district to make room for a metro project on...

Vietnam seeks India’s help to restore ancient temples

The Vietnam government has sought assistance from the Archaeological Survey of India (ASI) to restore a portion of...