Circulation of water in deep Earth’s interior

Date:

Share post:

The existence of water in deep Earth is considered to play an important role in geodynamics, because water drastically changes the physical properties of mantle rock, such as melting temperature, electric conductivity, and rheological properties. Water is transported into deep Earth by the hydrous minerals in the subducting cold plates. Hydrous minerals, such as serpentine, mica and clay minerals, contain H2O in the form of hydroxyl (-OH) in the crystal structure. Most of the hydrous minerals decompose into anhydrous minerals and water (H2O) when they are transported into deep Earth, at 40-100 km depth, due to the high temperature and pressure conditions.

Circulation of water in deep Earth's interior
Water is transported into Earth’s deep interior by dense hydrous magnesium silicates (DHMSs)
[Credit: Ehime University]

However, it has also been reported that some hydrous minerals, called dense hydrous magnesium silicates (DHMSs), may survive in the deeper part of Earth’s interior if the subducting plate is significantly colder than the surrounding mantle. DHMS is a series of hydrous minerals which have high stability under the pressure of deep Earth’s interior. DHMS is also referred to as “alphabet phases”: phase A, phase B, phase D, etc.




Until recently phase D (chemical composition: MgSi2O6H2) was known to be the highest pressure phase of DHMSs. However, Tsuchiya 2013 conducted first principles calculation (a theoretical calculation method based on quantum mechanics) to investigate the stability of phase D under pressure and found that this phase transforms to a new phase with a chemical composition of MgSiO4H2 (plus stishovite, a high pressure form of SiO2, if the system keeps the same chemical composition) above 40 GPa (GPa=109 Pa). This predicted phase has been experimentally confirmed by Nishi et al. 2014 and named as “phase H”. The theoretical calculation by Tsuchiya 2013 also suggests that phase H finally decomposes into the anhydrous mineral MgSiO3 by releasing H2O by further compression.

Circulation of water in deep Earth's interior
The thick red line indicates the calculated dissociation phase boundary of phase H
[Credit: Ehime Univeristy]

Although the theoretical calculation estimated the decomposition pressure of phase H around the middle of the lower mantle (from 660 km to 2900 km depth), a detailed determination has not yet been achieved, because the estimation of the Gibbs free energy of H2O was needed to determine the decomposition pressure of phase H. The Gibbs free energy is a thermodynamic potential that can determine the stability of a system. At lower mantle conditions, the H2O phase has a crystal structure with disordered hydrogen positions, i.e. hydrogen positions are statistically distributed among several different positions. In order to calculate the disordered state of hydrogen, Tsuchiya and Umemoto 2019 calculated several different hydrogen positions and estimated the Gibbs free energy of H2O using a technique based on statistical mechanics.




As a result, they estimated the decomposition pressure of phase H at around 62 GPa at 1000 K, corresponding to the ~1500 km depth . This result indicates that the transportation of water by subducting plate terminates at the middle of the lower mantle in the Mg-Si-O system. Tsuchiya and Umemoto 2019 also suggested that superionic ice may be stabilized by the decomposition of phase H in the subducted plate. In superionic ice, oxygen atoms crystalize at lattice points whereas hydrogen atoms are freely mobile. The chemical reactions between superionic ice and surrounding minerals have not been identified yet, but high diffusivity of hydrogen in superionic ice may produce reactions faster than that in solid ice, but different from water, the liquid phase of H2O.

The findings are published in Geophysical Research Letters.

Source: Ehime University [August 19, 2019]

ADVERTISEMENT

spot_img

Related articles

An acre of rainforest lost every four seconds

An area the size of a football pitch is being lost in the rainforests every four seconds, the...

New study shows Indonesia’s disastrous deforestation

Satellite images have found that Indonesia's ancient forests, a cradle of biodiversity and a buffer against climate change,...

Diverse life forms may have evolved earlier than previously thought

Diverse microbial life existed on Earth at least 3.75 billion years ago, suggests a new study led by...

Nearly 900,000 pangolins trafficked worldwide: watchdog

Nearly 900,000 pangolins are believed to have been trafficked worldwide in the past two decades, a wildlife watchdog...

Joshua trees facing extinction

They outlived mammoths and saber-toothed tigers. But without dramatic action to reduce climate change, new research shows Joshua...

Study shows impacts of deforestation and forest burning on biodiversity in the Amazon

A new study, co-authored by University of Arizona researchers and published in the journal Nature, provides the first...

New study shows retreat of East Antarctic ice sheet during previous warm periods

Questions about the stability of the East Antarctic Ice Sheet are a major source of uncertainty in estimates...

Researchers study sediment record in deep coral reefs

A University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science-led research team analyzed the sediments of...