Bright points in sun’s atmosphere mark patterns deep in its interior

Date:

Share post:

New research that uses data from NASA’s Solar Dynamics Observatory, or SDO, to track bright points in the solar atmosphere and magnetic signatures on the sun’s surface offers a way to probe the star’s depths faster than ever before. The technique opens the door for near real-time mapping of the sun’s roiling interior — movement that affects a wide range of events on the sun from its 22-year sunspot cycle to its frequent bursts of X-ray light called solar flares.

Bright points in sun's atmosphere mark patterns deep in its interior
Brightpoints in the sun’s atmosphere, left, correspond to magnetic parcels on the sun’s surface, seen in the processed data on the right. Green spots show smaller parcels, red and yellow much bigger ones. Images based on data from NASA’s SDO captured at 8 p.m. EDT on May 15, 2010 [Credit: NASA/SDO]

“There are all sorts of things lurking below the surface,” said Scott McIntosh, first author of a paper on these results in the April 1, 2014, issue of The Astrophysical Journal Letters. “And we’ve found a marker for this deep rooted activity. This is kind of a gateway to the interior, and we don’t need months of data to get there.”

One of the most common ways to probe the sun’s interior is through a technique called helioseismology in which scientists track the time it takes for waves — not unlike seismic waves on Earth — to travel from one side of the sun to the other. From helioseismology solar scientists have some sense of what’s happening inside the sun, which they believe to be made up of granules and super-granules of moving solar material. The material is constantly overturning like boiling water in a pot, but on a much grander scale: A granule is approximately the distance from Los Angeles to New York City; a super-granule is about twice the diameter of Earth.

Instead of tracking seismic waves, the new research probes the solar interior using the Helioseismic Magnetic Imager on NASA’s Solar Dynamics Observatory, or SDO, which can map the dynamic magnetic fields that thread through and around the sun. Since 2010, McIntosh has tracked the size of different magnetically-balanced areas on the sun, that is, areas where there are an even number of magnetic fields pointing down in toward the sun as pointing out. Think of it like looking down at a city from above with a technology that observed people, but not walls, and recording areas that have an even number of men and women. Even without seeing the buildings, you’d naturally get a sense for the size of rooms, houses, buildings, and whole city blocks — the structures in which people naturally group.

Bright points in sun's atmosphere mark patterns deep in its interior
SDO contains three instruments; Helioseismic and Magnetic Imager (HMI), Atmospheric Imaging Assembly (AIA), and Extreme Ultraviolet Variablity Experiment(EVE) — for observations leading to a more complete understanding of the solar dynamics that drive variability in the Earth’s environment [Credit: NASA/Goddard Space Flight Center]

The team found that the magnetic parcels they mapped corresponded to the size of granules and supergranules, but they also spotted areas much larger than those previously noted — about the diameter of Jupiter. It’s as if when searching for those pairs of men and women, one suddenly realized that the city itself and the sprawling suburbs was another scale worth paying attention to. The scientists believe these areas correlate to even larger cells of flowing material inside the sun.

The researchers also looked at these regions in SDO imagery of the sun’s atmosphere, the corona, using the Atmospheric Imaging Assembly instrument. They noticed that ubiquitous spots of extreme ultraviolet and X-ray light, known as brightpoints, prefer to hover around the vertices of these large areas, dubbed g-nodes.

“Imagine a bunch of helium balloons with weights on them,” said Robert Leamon, co-author on the paper at Montana State University in Bozeman and NASA Headquarters in Washington. “The weights get carried along by the motions at the bottom. We can track the motion of the helium balloons floating up high and that tells us what’s happening down below.”

By opening up a way to peer inside the sun quickly, these techniques could provide a straightforward way to map the sun’s interior and perhaps even improve our ability to forecast changes in magnetic fields that can lead to solar eruptions.

Source: NASA/Goddard Space Flight Center [April 17, 2014]

ADVERTISEMENT

spot_img

Related articles

‘Rice theory’ explains north-south China cultural differences

A new cultural psychology study has found that psychological differences between the people of northern and southern China...

Iron Age woman’s footless body found near West Knoyle

A skeleton of an Iron Age woman with her feet chopped off has been discovered in a field...

Hubble sees a spiral home to exploding stars

In this  Hubble image, we can see an almost face-on view of the galaxy NGC 1084. At first...

World’s largest asteroid impacts found in central Australia

A 400 kilometre-wide impact zone from a huge meteorite that broke in two moments before it slammed into...

Greek economic crisis leads to air pollution crisis

In the midst of a winter cold snap, a study from researchers in the United States and Greece...

Discovery of two close-in planet companions sheds new light on planet formation

For the past 20 years, astronomers peered into the night sky, puzzled about a type of planet called...

Experts to delve deep into Banga skeleton, artefacts

The human skeleton, believed to be 3,500 years old, has finally been lifted from the mound in Banga...

Research reveals ‘topsy turvy’ ocean circulation on distant planets

The salt levels of oceans on distant Earth-like planets could have a major effect on their climates --...