ALMA discovers massive rotating disk in early universe

Date:

Share post:

In our 13.8 billion-year-old universe, most galaxies like our Milky Way form gradually, reaching their large mass relatively late. But a new discovery made with the Atacama Large Millimeter/submillimeter Array (ALMA) of a massive rotating disk galaxy, seen when the universe was only ten percent of its current age, challenges the traditional models of galaxy formation. 
ALMA discovers massive rotating disk in early universe
Artist impression of the Wolfe Disk, a massive rotating disk galaxy in the early, dusty universe. The galaxy
was initially discovered when ALMA examined the light from a more distant quasar (top left)
[Credit: NRAO/AUI/NSF, S. Dagnello]




Galaxy DLA0817g, nicknamed the Wolfe Disk after the late astronomer Arthur M. Wolfe, is the most distant rotating disk galaxy ever observed. The unparalleled power of ALMA made it possible to see this galaxy spinning at 170 miles (272 kilometers) per second, similar to our Milky Way.

“While previous studies hinted at the existence of these early rotating gas-rich disk galaxies, thanks to ALMA we now have unambiguous evidence that they occur as early as 1.5 billion years after the Big Bang,” said lead author Marcel Neeleman of the Max Planck Institute for Astronomy in Heidelberg, Germany.
How did the Wolfe Disk form?
The discovery of the Wolfe Disk provides a challenge for many galaxy formation simulations, which predict that massive galaxies at this point in the evolution of the cosmos grew through many mergers of smaller galaxies and hot clumps of gas.
ALMA discovers massive rotating disk in early universe
ALMA radio image of the Wolfe Disk, seen when the universe was only ten percent of its current age
[Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello]




“Most galaxies that we find early in the universe look like train wrecks because they underwent consistent and often ‘violent’ merging,” explained Neeleman. “These hot mergers make it difficult to form well-ordered, cold rotating disks like we observe in our present universe.”

In most galaxy formation scenarios, galaxies only start to show a well-formed disk around 6 billion years after the Big Bang. The fact that the astronomers found such a disk galaxy when the universe was only ten percent of its current age, indicates that other growth processes must have dominated.
“We think the Wolfe Disk has grown primarily through the steady accretion of cold gas,” said J. Xavier Prochaska, of the University of California, Santa Cruz and coauthor of the paper. “Still, one of the questions that remains is how to assemble such a large gas mass while maintaining a relatively stable, rotating disk.”
Star formation
The team also used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the NASA/ESA Hubble Space Telescope to learn more about star formation in the Wolfe Disk. 
ALMA discovers massive rotating disk in early universe
The Wolfe Disk as seen with ALMA (right – in red), VLA (left – in green) and the Hubble Space Telescope
(both images – blue). In radio light, ALMA looked at the galaxy’s movements and mass of atomic gas
and dust and the VLA measured the amount of molecular mass. In UV-light, Hubble observed
massive stars. The VLA image is made in a lower spatial resolution than the ALMA image,
and therefore looks larger and more pixelated [Credit: ALMA (ESO/NAOJ/NRAO),
M. Neeleman; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble]




In radio wavelengths, ALMA looked at the galaxy’s movements and mass of atomic gas and dust while the VLA measured the amount of molecular mass – the fuel for star formation. 

In UV-light, Hubble observed massive stars. “The star formation rate in the Wolfe Disk is at least ten times higher than in our own galaxy,” explained Prochaska. “It must be one of the most productive disk galaxies in the early universe.”
A ‘normal’ galaxy
The Wolfe Disk was first discovered by ALMA in 2017. Neeleman and his team found the galaxy when they examined the light from a more distant quasar. The light from the quasar was absorbed as it passed through a massive reservoir of hydrogen gas surrounding the galaxy – which is how it revealed itself. Rather than looking for direct light from extremely bright, but more rare galaxies, astronomers used this ‘absorption’ method to find fainter, and more ‘normal’ galaxies in the early universe.

“The fact that we found the Wolfe Disk using this method, tells us that it belongs to the normal population of galaxies present at early times,” said Neeleman. “When our newest observations with ALMA surprisingly showed that it is rotating, we realized that early rotating disk galaxies are not as rare as we thought and that there should be a lot more of them out there.”
“This observation epitomizes how our understanding of the universe is enhanced with the advanced sensitivity that ALMA brings to radio astronomy,” said Joe Pesce, astronomy program director at the National Science Foundation, which funds the telescope. “ALMA allows us to make new, unexpected findings with almost every observation.”
The research has been published in the journal Nature.

ADVERTISEMENT

spot_img

Related articles

Far-away planet systems are shaped like the Solar System

Researchers at The Australian National University (ANU) have found that far-away planet systems are shaped like the solar...

Research team finds radial acceleration relation in all common types of galaxies

The distribution of normal matter precisely determines gravitational acceleration in all common types of galaxies, a team led...

The quest for galactic relics from the primordial universe

They are massive, they are very small, and they are extremely rare, but may hold the secrets of...

Experts cast doubt on Big Bang bolstering discovery

Astrophysicists are casting doubt on what just recently was deemed a breakthrough in confirming how the universe was...

Astronomers discover micronovae, a new kind of stellar explosion

A team of astronomers, with the help of the European Southern Observatory's Very Large Telescope (ESO's VLT), have...

Lightning signature could help reveal the Solar System’s origins

Every second, lightning flashes some 50 times on Earth. Together these discharges coalesce and get stronger, creating electromagnetic...

Scientists take viewers to the center of the Milky Way

A new visualization provides an exceptional virtual trip — complete with a 360-degree view — to the center...

Rocky planet neighbour looks familiar, but is not Earth’s twin

Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is...