ALMA captures dramatic stellar fireworks


Share post:

1350 light years away, in the constellation of Orion (the Hunter), lies a dense and active star formation factory called the Orion Molecular Cloud 1 (OMC-1), part of the same complex as the famous Orion Nebula. Stars are born when a cloud of gas hundreds of times more massive than our Sun begins to collapse under its own gravity. In the densest regions, protostars ignite and begin to drift about randomly. Over time, some stars begin to fall toward a common centre of gravity, which is usually dominated by a particularly large protostar — and if the stars have a close encounter before they can escape their stellar nursery, violent interactions can occur.

ALMA captures dramatic stellar fireworks
Stellar explosions are most often associated with supernovae, the spectacular deaths of stars. But new ALMA 
observations  of the Orion Nebula complex provide insights into explosions at the other end of the stellar life cycle,
 star birth. Astronomers captured these dramatic images of the remains of a 500-year-old explosion as they explored 
the firework-like debris from the birth of a group of massive stars, demonstrating that star formation can be a 
violent and explosive process too. The colors in the ALMA data represent the relative Doppler shifting of the 
millimeter-wavelength light emitted by carbon monoxide gas. The blue color in the ALMA data represents
 gas approaching at the highest speeds; the red color is from gas moving toward us more slowly. The background
 image includes optical and near-infrared imaging from both the Gemini South and ESO Very Large Telescope. 
The famous Trapezium Cluster of hot young stars appears towards the bottom of this image. The ALMA data 
do not cover the full image shown here [Credit: ALMA (ESO/NAOJ/NRAO), J. Bally/H. Drass et al.]

About 100,000 years ago, several protostars started to form deep within the OMC-1. Gravity began to pull them together with ever-increasing speed, until 500 years ago two of them finally clashed. Astronomers are not sure whether they merely grazed each other or collided head-on, but either way it triggered a powerful eruption that launched other nearby protostars and hundreds of colossal streamers of gas and dust out into interstellar space at over 150 kilometres per second. This cataclysmic interaction released as much energy as our Sun emits in 10 million years.

Fast forward 500 years, and a team of astronomers led by John Bally (University of Colorado, USA) has used the Atacama Large Millimeter/submillimeter Array (ALMA) to peer into the heart of this cloud. There they found the flung-out debris from the explosive birth of this clump of massive stars, looking like a cosmic version of fireworks with giant streamers rocketing off in all directions.

Such explosions are expected to be relatively short-lived, the remnants like those seen by ALMA lasting only centuries. But although they are fleeting, such protostellar explosions may be relatively common. By destroying their parent cloud, these events might also help to regulate the pace of star formation in such giant molecular clouds.

Hints of the explosive nature of the debris in OMC-1 were first revealed by the Submillimeter Array in Hawaii in 2009. Bally and his team also observed this object in the near-infrared with the Gemini South telescope in Chile, revealing the remarkable structure of the streamers, which extend nearly a light-year from end to end.

The new ALMA images, however, showcase the explosive nature in high resolution, unveiling important details about the distribution and high-velocity motion of the carbon monoxide (CO) gas inside the streamers. This will help astronomers understand the underlying force of the blast, and what impact such events could have on star formation across the galaxy.

The discovery has been published in the Astrophysical Journal.

Source: ESO [April 08, 2017]



Related articles

One of the densest clusters of galaxies in the universe is revealed

A study published recently in the journal Nature Astronomy and which questions current models of structure formation in...

Jupiter’s complex transient auroras

Combined observations from three spacecraft show that Jupiter's brightest auroral features recorded to date are powered by both...

Retreating snow line reveals organic molecules around young star

Astronomers using ALMA have detected various complex organic molecules around the young star V883 Ori. A sudden outburst...

Australian telescope creates a new atlas of the universe

The Australian Square Kilometre Array Pathfinder (ASKAP), developed and operated by Australia's national science agency, CSIRO, mapped approximately...

Einstein proved right in another galaxy

An international team of astronomers have made the most precise test of gravity outside our own solar system. An...

From star to solar system: How protoplanetary rings form in primordial gas clouds

Four-hundred fifty light-years from Earth, a young star is glowing at the center of a system of concentric...

CALIFA renews the classification of galaxies

The objects within galaxies have two basic types of motions: orbiting around the galaxy centre in a regular...

An eccentric hot Neptune

Of the roughly 4300 exoplanets confirmed to date, about ten percent of them are classified as "hot Jupiters."...