A new tool to decipher evolutionary biology


Share post:

Understanding evolution is one of the cornerstones of biology — evolution is, in fact, the sole explanation for life’s diversity on our planet.

A new tool to decipher evolutionary biology
A 3-D structure of human haemoglobin, showing residues with high (red) or low (light yellow) evolutionary rates
 as determined by ModelFinder [Credit: Copyright: Minh Quang Bui/University of Vienna]

Based on the evolution of proteins, researchers may explain the emergence of new species and functions through genetic changes, how enzymes with novel functions might be engineered, or, for example, how humans are related to their closest relatives such as gorillas or bonobos.

One popular approach to the study of evolution is to compare genome data using bioinformatics (computer-aided) tools. Scientists using these approaches may compare specific proteins, which consist of combinations of 20 universal building blocks, called amino acids.

So far, the bioinformatics tools used to study the evolution of single proteins have assumed that the speed at which different regions of proteins evolve can be modeled with a statistical distribution whose shape is determined by a single variable.

“That assumption, however, does not reflect reality, and it might have led to a large proportion of biased phylogenetic results being published over the last two decades or so,” explains Minh Quang Bui, from the Center for Integrative Bioinformatics (CIBIV) and co-author of the study.

A new algorithm allows insights into protein evolution

Arndt von Haeseler, group leader at the Max F. Perutz Laboratories (MFPL) and Lars Jermiin from the Australian National University have now found a revolutionary way of implementing different rates of evolution into bioinformatics models.

It was well known among experts that the popular approach might not capture the complexities of protein evolution. However, the computational cost of using more realistic models was unacceptably high. “We have now developed a fast algorithm that gives us previously unavailable insights into protein evolution — the new tool is likely to have a huge impact on a wide variety of research areas, including on the evolution of pathogens and the dispersal of agricultural pests, ” adds Lars Jermiin.

The new program “ModelFinder” will allow more accurate scientific estimates of evolutionary processes. This enhanced understanding of evolution will help us come one step closer to unraveling the mysteries, which are responsible for the great diversity on our planet.

The study is published in Nature Methods.

Source: University of Vienna [May 09, 2017]



Related articles

Cenozoic carnivore from Turkey may have evolved without placental competitors

A new marsupial-like carnivorous animal that lived more than 40 million years ago in what is now Turkey...

Diverse ecosystems are crucial climate change buffer

Preserving diverse plant life will be crucial to buffer the negative effects of climate change and desertification in...

Evolution in an island, the secret for a longer life

ICP researchers have discovered one of the first fossil-based evidences supporting the evolutionary theory of aging, which predicts...

Biologists follow ‘fossilizable’ clues to pinpoint when mammal, bird and dinosaur ancestors became athletes

Many mammals and birds are remarkable athletes; mice work hard to dig burrows for protection and sparrows fight...

New Year brings new attacks on Evolution in US schools

The new year is bringing new controversy over teaching evolution in public schools, with two bills in New...

New fossil Hyena found in Tibet

A group of fossils discovered in the Qinghai-Tibet Plateau, known as the Roof of the World, have been...

Oxford archaeologists unravel the past of Pattanam

Oxford archaeologists working at Pattanam, located 25 km north of Kochi, have confirmed that it was an Indian...

Fossil shows how snakes lost their legs

Fresh analysis of a reptile fossil is helping scientists solve an evolutionary puzzle - how snakes lost their...